Id	1
Question	Which of the following is true?
A	$f(x)=x^2$ Is uniformly continuous on \mathbb{R}
В	$f(x) = \sin x$ Is uniformly continuous on \mathbb{R}
С	$f(x)=x^3$ Is uniformly continuous on \mathbb{R}
D	$f(x) = \sin \frac{1}{x}$ Is uniformly continuous on (0,1)
Answer	В

Id	2
Question	Consider the function $f: \mathbb{R} \to \mathbb{R}$. let $a \in \mathbb{R}$. consider the two statements I. f is continuous at a . II. if $x_n \to a$, then $f(x_n) \to f(a)$ Then
A	$(II) \Rightarrow (I)$ But not the converse
В	$(I) \Rightarrow (II)$ But not the converse
С	There is no implication between (I) and (II)
D	$(I) \Leftrightarrow (II)$
Answer	D

Id	3
Question	On $\mathbb{R} \times \mathbb{R}$, define $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by $d(x, y) = \begin{cases} 0, x = y; \\ 1, x \neq y \end{cases}$
	then
A	d Is a metric on \mathbb{R} in which every singleton set is open
В	d Is a metric on \mathbb{R} in which [0,1] is not open
С	d Is not a metric on \mathbb{R} and the image of d has two elements
D	d Is monotonically increasing
Answer	A

Id	4
Question	Let $a_n = \begin{cases} 2 + \frac{1}{n}, & \text{if } n \text{ is even }; \\ 0, & \text{if } n \text{ is odd} \end{cases}$ Then
A	a_n Converges.
В	$limsup a_n = limin f a_n = 2$
С	$\limsup a_n = 2$
D	$limin f a_n = 2$
Answer	С

Id	5
Question	Consider the statements I. arbitrary intersection of closed sets is closed II. arbitrary union of closed sets is closed
A	Only (I) is true
В	Only (II) is true
С	Both (I) and (II) are true
D	Both (I) and (II) are false
Answer	A

Id	6
Question	Let G be a cyclic group of order 120. which of the following is false?
A	G has a unique subgroup of order 80
В	For every divisor d of 120, G has a unique subgroup of order d
С	Every proper subgroup of G has order less than or equal to 60
D	G has a subgroup of order 8 but not a subgroup of order 16
Answer	A

Id	7
Question	Which of the following is false?
A	A_4 Is a normal subgroup of S_4
В	A_4 Has 12 elements
C	A_4 Has no proper normal subgroup
D	A_5 Has no proper normal subgroup
Answer	С

Id	8
Question	Let σ be a permutation of 10 symbols. Then the order of σ
A	is 10
В	is at most 20
С	Can be 10
D	Can be 30
Answer	D

Id	9
Question	The number of conjugates of (1 2) (3 4) in the permutation group S_5 is
A	10
В	60
С	15
D	30
Answer	C

Id	10
Question	The number of injective group homomorphisms from \mathbb{Z}_7 to \mathbb{Z}_{14} is
A	1
В	7
С	14
D	6
Answer	D

Id	11
Question	Which of the following space is normal?
A	Product of two normal spaces
В	Closed subspace of a normal space
С	The product space \mathbb{R}^J where J is uncountable
D	Subspace of a normal space
Answer	В

Id	12
Question	I. If X is Hausdorff space, then every singleton set is closed.II. If every singleton set in X is closed, then X is Hausdorff.
A	Only (I) is true
В	Only (II) is true
С	Both (I) and (II) are true
D	Both (I) and (II) are false
Answer	A

Id	13
Question	I. IR With usual topology is second countable.II. IR With usual topology is first countable.
A	Only (I) is true
В	Only (II) is true
С	Both (I) and (II) are true
D	Both (I) and (II) are false
Answer	С

Id	14
Question	Let V be a vector space of all real $n \times n$ matrices $A = [a_{ij}]$ such that
	$a_{ij} = 0$ if $i + j \neq n + 1$ then the dimension of V is
A	n+1
В	1
С	n
D	n^2-n
Answer	С

Id	15
Question	The characteristics polynomial of the matrix $ \begin{vmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ a_0 & a_1 & a_2 & a_3 & \dots & a_{n-1} \end{vmatrix} $ is
A	$x^{n} + a_{n-1}x^{n-1} + \dots + a_{0}$
В	$x^n - a_{n-1}x^{n-1} - \cdots - a_0$
С	$x^{n} + a_0 x^{n-1} + \dots + a_{n-1}$
D	$x^n - a_0 x^{n-1} - \cdots - a_{n-1}$
Answer	В

Id	16
Question	Let T be a linear operator on \mathbb{R}^2 such that $T(3,1)=(2,-4)$ and $T(1,1)=(0,2)$. Then $T(-1,5)$ is
A	(-6, 28)
В	(2, 3)
С	(-2, 4)
D	(2, 4)
Answer	A

Id	17
Question	Let V be a vector space of polynomials of degree less than or equal to n . The T be a linear operator given by $T(f(x)) = f'(x)$. Then
A	Rank $T=1$
В	Rank $T=n-1$
С	Rank $T=n+1$
D	Rank $T=n$
Answer	D

Id	18
Question	The rank and nullity of the matrix $\begin{vmatrix} a & a & \cdots & a \\ a & a & \cdots & a \\ \vdots & \vdots & \cdots & \vdots \\ a & a & \cdots & a \\ a & a & \cdots & 0 \end{vmatrix}_{n \times n}$ where $a \neq 0$ are respectively.
A	2 and $n-2$
В	n And $n-1$
С	1 and $n-1$
D	n-2 And 2.
Answer	A

Id	19
Question	The characteristics roots of a Hermitian matrix are
A	real
В	imaginary
С	rational
D	none
Answer	A

Id	20
Question	Let f be an entire function with $ f(z) \le c z ^n$, for some $n \in \mathbb{N}$ and for all $z \in \mathbb{C}$, then
A	$f \equiv 0$
В	f Is a polynomial
С	f Is constant
D	$f(z)=z\forall z$
Answer	В

Id	21
Question	The integral of $\frac{\sin z}{z}$ around the unit circle is
A	$\pi/2$
В	$2\pi i$
С	1
D	0
Answer	D

Id	22
Question	Which of the following statement is false?
A	sinz is analytic on C
В	cosz is analytic on ℂ
С	sinz Is unbounded on C
D	cosz Is bounded on ℂ
Answer	D

Id	23
Question	Suppose $f(z) = \frac{1}{(z-1)\sin(z-1)}$. Then $z=1$ is
A	A simple pole
В	An essential singularity
C	A removable singularity
D	A pole of order 2
Answer	D

Id	24
Question	A Mobius transformation on the complex plane maps the set of straight lines and circles to the set of
A	Straight lines and hyperbola
В	Circles and ellipse
С	Hyperbola and parabola
D	Straight lines and circles
Answer	D

Id	25
Question	Let X be a normed linear space and $x, y \in X$ such that $x \neq y$. Then
A	There is no bounded linear functional f such that $f(x)=f(y)$
В	There is no bounded linear functional f and g such that $f(x) = x $ and $g(y) = y $
С	There is no bounded linear functional f such that $f(x) \neq f(y)$
D	There is a bounded linear functional f such that $f(x) \neq f(y)$
Answer	D

Id	26
Question	In a separable Hilbert space every orthonormal system is:
A	infinite
В	complete
С	finite
D	countable
Answer	D

Id	27
Question	The initial value problem $\frac{dy}{dx} = 2y^{1/3}$, $y(0) = 1$ has
A	No solution
В	Infinitely many solutions
С	Exactly one solution
D	Finitely many solutions
Answer	С

Id	28
Question	Consider the following two statements I. let $\Phi_1(x)$ an $\Phi_2(x)$ be two linearly independent functions on $I: -\infty < x < \infty$ II. $W(\Phi_1, \Phi_2) \neq 0$ for some $x_0 \in I$
A	$(I) \Leftrightarrow (II)$
В	$(I)\Rightarrow (II)$ But not the converse
С	$(II)\Rightarrow (I)$ But not the converse
D	$(I) \Leftrightarrow (II)$
Answer	С

Id	29
Question	$\sum_{d 208} \Phi(d)$
A	207
В	103
С	208
D	104
Answer	C

Id	30
Question	Which of the following isn't an integrating factor of $xdy - ydx = 0$
A	$\frac{1}{x^2}$
В	$\frac{1}{x^2+y^2}$
С	$\frac{1}{xy}$
D	$\frac{x}{y}$
Answer	D

Id	31
Question	The general solution of the PDE $\frac{\partial^2 z}{\partial x \partial y} = x + y$ is
A	$\frac{1}{2}xy(x+y)+F(x)+G(y)$
В	$\frac{1}{2}xy(x-y)+F(x)+G(y)$
С	$\frac{1}{2}xy(x-y)+F(x)G(y)$
D	$\frac{1}{2}xy(x+y)+F(x)G(y)$
Answer	A

Id	32
Question	The equation $u_{xx} + yu_{yy} = 0$ $y > 0$ is
A	hyperbolic
В	parabolic
C	elliptic
D	Laplacian
Answer	C

Id	33
Question	The set of all spheres with unit radius with center in the XY-plane is characterised by
A	First order PDE
В	First order nonlinear PDE
С	Second order linear PDE
D	Second order nonlinear PDE
Answer	В

Id	34
Question	I. F_9 Is a subfield of F_{81}
	II. F_{27} Is a subfield of F_{81}
A	Only (I) is true
В	Only (II) is true
С	Both (I) and (II) true
D	Both (I) and (II) false
Answer	A

Id	35
Question	The number of integral domains containing 15 elements is
A	1
В	3
С	5
D	0
Answer	D

Id	36
Question	Which one of the following statements is correct? The differential equation
	$\left(\frac{dy}{dx}\right)^2 + 5y^{1/3} = x \text{is a}$
A	Linear equation of order 2 and degree 3
В	Non linear equation of order 1 and degree 2
С	Linear equation of order 1 and degree 6
D	Non linear equation of order 1 and degree 6
Answer	В

Id	37
Question	The singular solution of $y = x \frac{dy}{dx} + \frac{dy}{dx} - \left(\frac{dy}{dx}\right)^2$ is
A	$y-(x+1)^2=0$
В	$y^2 + 4(x+1) = 0$
C	$y^2 - 4(x+1) = 0$
D	$4y - (x+1)^2 = 0$
Answer	D

Id	38
Question	Number of ring homomorphisms from $\mathbb{Z}_{30} \to \mathbb{Z}_{30}$ is
A	8
В	30
С	1
D	2
Answer	A

Id	39
Question	The first integral of the Euler-Lagrange's differential equation of functional $f = f(y, y')$ is
A	$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = k$
В	$\frac{\partial^2 f}{\partial y'^2} = k$
С	$f - y' \frac{\partial f}{\partial y'} = k$
D	$y'\frac{\partial f}{\partial y'}=k$
Answer	C

Id	40
Question	The curve which extremizes the functional:
	$I(y(x)) = \int_{0}^{\frac{\pi}{4}} [(y'')^{2} - y^{2} + x^{2}] dx \text{ and satisfy } y(0) = 0, y'(0) = 1, y(\frac{\pi}{4}) = y'(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}$ is
A	$y=1-\cos x$
В	$y = \tan x$
С	$y = \cos x$
D	$y = \sin x$
Answer	D

Id	41
Question	The resolvent kernel of the Volterra IE having kernel $k(x,i)=1$ is
A	$e^{(t-s)(\lambda)}$
В	$e^{(t-s)^2(\lambda)}$
С	$\lambda (t-s)^2$
D	$\lambda(t-s)$
Answer	D

Id	42
Question	The eigenvalue λ of Fredholm integral equation $y(x) = \lambda \int_0^1 x^2 t y(t) dt$ is
A	$\lambda = 4$
В	$\lambda = -4$
С	$\lambda = 2$
D	$\lambda = -2$
Answer	A

Id	43	
Question	The boundary of the set of feasible solutions of a LPP is formed by	
A	Intersecting hyperplanes	
В	Intersection of closed sets	
С	Orthogonal hyperplanes	
D	Separating hyperplanes	
Answer	A	

Id	44	
Question	The set of feasible solutions to a linear programming problem is a:	
A	Concave set	
В	Noon-empty set	
С	Bounded set	
D	Convex set	
Answer	D	

Id	45
Question	An urn contains 6 black and 5 white balls. Two balls are drawn one by one at random with replacement. The probability of getting two white balls is
A	2/11
В	4/25
С	25/121
D	2/25
Answer	С

Id	46
Question	A continuous r.v. X with support (0,4) has the p.d.f $f(x) = \frac{1}{2} - ax$. Then the value of
	a must be:
A	1
В	$\frac{1}{4}$
С	$\frac{1}{8}$
D	0
Answer	С

Id	47		
Question	A cubic polynomial which takes the followin	g values	
	X	f(x)	
	0	1	
	1	2	
	2	1	
	3	10	
	By Newton's forward interpolation formula is	3	
A	$4x^3 - 2x^2 + 5x + 1$		
В	$2x^3 - 7x^2 + 6x + 1$		
С	$2x^3 - x^2 + 8x + 1$		
D	$4x^3 - 3x^2 + 6x + 1$		
Answer	В		

Id	48
Question	Simpsons's rule for integration gives exact result when $f(x)$ is a polynomial of degree
A	1
В	2
С	3
D	All of these
Answer	D

Id	49
Question	Let $\alpha:(0,1) \to \mathbb{R}^3$ given by $\alpha(s) = (s, s+1, s^2)$ be curve parametrized by arc length
	s . Then the curvature of α at s is
A	2
В	2s
С	$\sqrt{2+4s^2}$
D	S
Answer	A

Id	50
Question	For the function $f(x,y)=(x-1)(x^2-y^2)$, the point (2/3,0) is
A	Not a critical point
В	Local minimum
C	Local maximum
D	Saddle point
Answer	D